
J Glob Optim (2008) 42:255–277
DOI 10.1007/s10898-007-9240-3

An algorithm for ordinal sorting based on ELECTRE
with categories defined by examples

Clara Rocha · Luis C. Dias

Received: 11 September 2007 / Accepted: 13 September 2007 / Published online: 11 October 2007
© Springer Science+Business Media, LLC. 2007

Abstract This work proposes a Progressive Assisted Sorting Algorithm (PASA) based
on a multicriteria evaluation ELECTRE-type method. The purpose of the PASA is to aid a
decision maker to progressively sort a set of alternatives into a set of categories, which we
considered are ordered (ordinal sorting), following a consistency principle. We consider the
principle that if an alternative outranks (is as good as) a second one, then it must belong
to the same category or to a better category. The set of alternatives already sorted by the
decision maker will implicitly define the categories, and will constrain the range of catego-
ries where other alternatives may be sorted. We show how the same idea may be used in
an aggregation/disaggregation approach, considering some parameters of ELECTRE are not
fixed a priori, but are constrained only by the examples provided. In this context, we establish
a “convex-shape property” stating that the range of possible categories for an alternative is
always an interval of categories. A discussion contrasting this approach with ELECTRE TRI
is included in the conclusions.

Keywords Multi-criteria decision aiding · Sorting problem · ELECTRE · Aggregation/
disaggregation approaches

1 Introduction

Sorting problems are concerned with evaluating a set A of alternatives in order to assign them
to mutually exclusive categories C1, C2, . . . , Cncat . In multicriteria analysis, the assignment

C. Rocha
Escola Superior de Tecnologia da Saúde de Coimbra, Instituto Politécnico de Coimbra, Rua 5 de Outubro,
S. Martinho do Bispo, Ap. 7006, Coimbra 3040-162, Portugal

C. Rocha
INESC Coimbra, R. Antero de Quental 199, Coimbra 3000-033, Portugal

L. C. Dias (B)
INESC Coimbra and Faculdade de Economia, Universidade de Coimbra, Av. Dias da Silva 165,
Coimbra 3004-512, Portugal
e-mail: lmcdias@fe.uc.pt

123

256 J Glob Optim (2008) 42:255–277

of an alternative ai to a category results from its intrinsic evaluation on different criteria, as
well as from the definition of the categories, sometimes also provided in terms of multiple
criteria. Among the methods that have been proposed to handle multiple criteria sorting
problems we can cite, e.g., Trichotomic Segmentation [12], N-TOMIC [11], ORCLASS [10],
ELECTRE TRI [19], PROAFTN [1], UTADIS [21], a general class of filtering methods [17],
rough sets [6] or the Koksalan-Ulu method [9].

In some cases, the categories are not ordered (nominal sorting or classification). For
instance, one may sort the members of a database of persons offering themselves to work in a
company into the categories “technical profile”, “commercial profile”, “leadership profile”,
etc., without stating one category is the best or the most important. In other cases (ordinal sort-
ing), the categories are ordered. For instance, one may sort the same job candidates into the
categories “low potential”, “average potential”, “high potential”, etc., where the candidates
placed in higher categories are supposedly better than the ones placed in lower categories.
When the categories are not ordered, they are usually defined through prototypical elements
(e.g., [1]), and the elements of A are sorted according to their similarity with such prototypes.
When the categories are ordered, they can also be defined through prototypical elements, but
typically they are defined through category limits, i.e., lower and upper bounds, where usually
the upper bound of a category is the lower bound of the next better category (e.g., ELECTRE
TRI [19]).

We are interested in ordinal sorting problems, with the categories ordered from worst (C1,
by convention) to best (Cncat). For these problems, there have been some proposals based on
aggregation/disaggregation approaches [3,8,21] to overcome the difficulties often felt by the
Decision Maker (DM) when asked to provide values for the method’s parameters. In some of
the best-known approaches, either based on utility functions [21] or based on ELECTRE TRI
[3,14,16], the DM is asked to provide prototypical elements (i.e., sorting examples), although
there exist parameters defining the category limits. In UTADIS [21], the examples are used to
infer all of the method’s parameters, including the category limits; in ELECTRE, inferring all
of the method’s parameters requires solving difficult non-linear problems [14]. As simplifica-
tions, [3] assumes the category limits are given, whereas [16] addresses the difficult problem
of inferring these limits from sorting examples. In all of these approaches, the examples are
used to infer a sorting model, which may then be used to sort any other alternatives.

A different new direction consists in proposing ordinal sorting procedures without explic-
itly defining category limits [5,9]. Rather, the DM is asked to sort some alternatives from
A as examples which will define the categories of the remaining alternatives. Doumpos and
Zopounidis [5] consider the examples as a learning set that can be used to define a sorting
model based on the net flow of PROMETHEE, solving a linear program to minimize the
violations of the classification rule. Koksalan and Ulu [9] propose an interactive procedure
to help the DM add successively new examples until all the alternatives are sorted. Their
interactive procedure, based on the additive aggregation model for multi-attribute utility
functions, ensures the examples are provided in a consistent manner, namely, imposing the
natural principle that if the utility of an alternative ai is equal to or higher than the utility of
a j , then the category of ai must be equal to or better than the category of a j .

The method of Koksalan and Ulu is to our knowledge a first example of what we call a
PASA (Progressive Assisted Sorting Algorithm). The purpose of a PASA is to assist a DM
in progressively sorting alternatives by assigning them to categories C1, C2, . . . , Cncat . The
DM exercises his or her judgement concerning each alternative to be sorted, with the aid of
a PASA that constrains the categories where it may be placed if consistency is to be main-
tained concerning previous judgements; namely, the DM is aided by learning the minimum
and maximum category where an alternative might be sorted, given the examples already

123

J Glob Optim (2008) 42:255–277 257

sorted. Sometimes, the minimum and maximum will coincide. Otherwise, it is up to the DM
to make a decision. In these cases, it is the DM who can assist the procedure by choosing
one among an interval of potential categories for an alternative. This decision will in turn
become a precedent for future ones. The spirit behind a PASA is hence that of aiding a DM
to perform a series of sorting decisions in a consistent manner, rather than deriving a model
to substitute the DM.

The purpose of this paper is to make a proposal of a PASA based on the ELECTRE
methodology, rather than utility functions. However, unlike utility functions, there is not an
undisputed principle of consistency to be followed, namely when we note that the outranking
relation S defined by ELECTRE is not complete (alternatives that do not outrank each other
are called incomparable), it is not transitive (e.g., ai Sa j and a j Sak , but not ai Sak), and it may
present cycles (e.g., a j Sak Sai Sa j). These difficulties stem form the strengths of ELECTRE,
namely the partial absence of compensation among criteria (a very low performance on one
criterion may not be compensated by an excellent performance on another criterion) and the
identification of incomparability (an alternative may not be sorted into a precise category
because it is too different from any category limits or prototypes).

In this paper we put forward the suggestion (also advocated by [2]) of using the semantic
meaning of the outranking relation (ai Sa j means ai is at least as good as a j , i.e., ai is not
worse than a j) to define a consistency principle: “if an alternative outranks a second one, then
it must belong to the same category or to a better category”. Although seemingly logical and
weak, this is a relatively strong requirement. For instance, it is not imposed by the ELECTRE
TRI method. Let us note that the word consistency in this work refers to not contradicting
the principle when outranking relations are used. Hence, lack of consistency may be due to
misjudgments of the DM (i.e., judgements the DM is willing to change in retrospect), or may
be due to the inadequacy of the principle, or may be due to the way the outranking relation
is defined in ELECTRE.

This paper also proposes how the same procedure may be used even when not all of the
method’s parameters have been fixed, using an aggregation/disaggregation approach. More
concretely, we will assume that the criteria weights and the cutting level of ELECTRE have
not been defined and will compute, for each potential sorting decision, a vector of weights
and an interval of values for the cutting level that make the decision compatible with the
previous ones. Therefore, we may conclude that there is more than one possible category for
a given alternative because either it is incomparable to those already sorted, or because of
the accepted variability of the weights and the cutting level, or for both of these reasons at
the same time. We will consider the parameters that do not interrelate the criteria (i.e., the
thresholds associated to each criterion individually) as fixed.

This paper is structured as follows. The next section briefly reminds how the [0,1]-valued
outranking relation used by ELECTRE TRI is defined. Section 3 presents an ELECTRE-
type PASA without explicit category limits, assuming all of the method’s parameters are
fixed beforehand. Section 4 presents the same procedure in the context of an aggregation/dis-
aggregation approach where the weights and the cutting level do not need to be precisely
fixed. Section 5 presents two illustrative examples. Finally, in Sect. 6 we highlight the main
characteristics of the proposed approach, discussing how it compares with ELECTRE TRI.

2 Valued outranking relations in ELECTRE

Let A = {a1, . . . , am} denote a set of alternatives (actions, objects, projects) represented by
a vector of evaluations on n criteria. Let g1(.), . . . , gn(.) denote the set of criteria functions,

123

258 J Glob Optim (2008) 42:255–277

such that gt (ai) indicates the evaluation (performance) of the i th alternative according to
the t th criterion. Without loss of generality, we will assume that the higher the performance
value gt (ai), the better the alternative will be.

A valued outranking relation is used by methods such as ELECTRE III [18] and ELEC-
TRE TRI [19,20] when comparing one alternative against another. Given any ordered pair
(ai , a j) ∈ A2, one may compute a credibility degree S(ai , a j) indicating the degree to which
ai outranks a j . This degree may then be compared with a cutting level λ, to decide whether
the outranking holds or not:

ai outranks a j (denoted ai Sa j)⇔ S(ai , a j) ≥ λ

In ELECTRE, the word outranking means “is at least as good as”, or “is not worse than”.
When comparing S(ai , a j), S(a j , ai), and λ, four situations may occur:

• ai Sa j and ¬(a j Sai)⇔ ai Pa j (ai is preferable to a j)
• ¬(ai Sa j) and a j Sai ⇔ a j Pai (a j is preferable to ai)
• ai Sa j and a j Sai ⇔ ai I a j (ai is indifferent to a j)
• ¬(ai Sa j) and ¬(a j Sai)⇔ ai Ra j (ai is incomparable to a j)

The remainder of this section briefly reminds the computation of a credibility degree
S(ai , a j) for any given ordered pair (ai , a j) ∈ A2. For justifications and more details see
[13,19].

2.1 Computation of single-criterion concordance indices

The single-criterion concordance index ct (ai , a j) indicates the degree to which the t th crite-
rion (t = 1, . . . , n) agrees with the conclusion that ai outranks a j . This index is computed
taking into account the difference of performances on the criterion considered, as well as two
thresholds: indifference qt and preference pt (0 ≤ qt ≤ pt):

ct (ai , a j) =

⎧
⎪⎨

⎪⎩

0 if gt (a j)− gt (ai) ≥ pt
pt−gt (a j)+gt (ai)

pt−qt
if qt < gt (a j)− gt (ai) < pt

1 if gt (a j)− gt (ai) ≤ qt

(1)

2.2 Computation of the global concordance index

A global concordance index c(ai , a j) is computed by aggregating the n single-criterion con-
cordance indices obtained before. It represents the level of majority among the criteria in
favor of the conclusion that ai outranks a j . The computation c(ai , a j) takes into account a
vector of criteria weights. Each of these weights kt (t = 1, . . . , n) can be interpreted as the
voting power of the respecting criterion. c(ai , a j) can be written as follows:

c(ai , a j) =
∑n

t=1 kt ct (ai , a j)
∑n

t=1 kt

Usually, the weights are normalized such that
∑n

t=1 kt = 1, therefore allowing to write:

c(ai , a j) =
n∑

t=1

kt · ct (ai , a j) (2)

123

J Glob Optim (2008) 42:255–277 259

2.3 Computation of single-criterion discordance indices

The single-criterion discordance index dt (ai , a j) indicates the degree to which the t th crite-
rion (t = 1, . . . , n) disagrees with the conclusion that ai outranks a j . This index is computed
taking into account the difference of performances on the criterion considered, as well as two
thresholds: discordance ut and veto vt (pt ≤ ut ≤ vt) [13]:

dt (ai , a j) =
⎧
⎨

⎩

1 if gt (a j)− gt (ai) ≥ vt
gt (a j)−gt (ai)−ut

vt−ut
if ut < gt (a j)− gt (ai) < vt

0 if gt (a j)− gt (ai) ≤ ut

(3)

2.4 Computation of the credibility degree

The computed global concordance index and single-criterion discordance indices are aggre-
gated into a credibility degree S(ai , a j) indicating the degree to which ai outranks a j . Orig-
inally, [18] proposed the following expression:

S(ai , a j) = c(ai , a j).
∏

t∈{1,...,n}:
dt (ai ,a j)>ct (ai ,a j)

1− dt (ai , a j)

1− c(ai , a j)
.

Two simpler variants have been proposed afterwards. The paper that introduced the pos-
sibility of using a discordance threshold ut different than the preference threshold pt [13]
suggests:

S(ai , a j) = c(ai , a j).
∏

t∈{1,...,n}
[1− dt (ai , a j)].

Another possibility proposed by [13] is:

S(ai , a j) = c(ai , a j)[1− dmax (ai , a j)]
with

dmax (ai , a j) = max
t∈{1,...,n} dt (ai , a j).

In the remainder of this paper we will consider that this latter variant has been chosen.

3 An ELECTRE-type PASA without explicit category limits

Usually, sorting methods require an a priori definition of categories by indicating profiles,
i.e., n-dimensional vectors of evaluations (g1(bh), . . . , gn(bh)), that are either limits sepa-
rating the categories or prototypes for the categories. The idea of using profiles as limits is
implemented by ELECTRE TRI, in which each category Ch (h = 1, . . . , ncat) is defined
by a lower-bound profile bh−1 and an upper-bound profile bh . The pessimistic variant of
ELECTRE TRI, for instance, sorts alternatives as follows:

ai ∈ Ch ⇔ ai Sbh−1 ∧ ¬ai Sbh .

The idea of using profiles as prototypes of the categories is used by PROAFTN [1], which
does not require the categories to be ordered (hence applying to the more general category

123

260 J Glob Optim (2008) 42:255–277

of nominal classification methods). In this method, alternatives are sorted according to their
similarity with the examples.

The idea we propose is to use exemplary alternatives (i.e., alternatives that a DM has
already placed into one of the categories judging their merits holistically) to indirectly con-
strain the range of possible categories for the remaining alternatives, in the context of a
PASA. Like ELECTRE TRI, this approach is meant for ordinal sorting problems only. How-
ever, unlike ELECTRE TRI, there are no profiles acting as category limits. On the other
hand, like PROAFTN, it requires that some alternatives (or at least some fictitious profiles)
are provided as examples for the categories. However, unlike PROAFTN, the approach we
propose is designed for ordinal sorting problems, and it is not based on the idea of a similarity
relation.

Let us define a set of categories C1, . . . , Cncat in increasing preference order (C1 is the
worst category and Cncat is the best one); formally, we will consider that each category is the
set of alternatives that have been sorted into that category. Therefore, ai ∈ Ch means that
the alterative ai has been sorted into the category Ch .

As inputs, let us consider the DM has a set of alternatives A∗ ⊂ A that have been pre-
viously sorted. For instance, the alternatives may have been sorted by the DM based on an
holistic evaluation of their absolute merit, or they may be fictitious alternatives imagined to
fit the DM’s notion of each category, or they may correspond to past decisions. A∗ should
contain at least one example for each category, so that each category has at least one refer-
ence. Let us emphasize that, contrarily to ELECTRE TRI, there is no a priori definition for
the categories, which are indirectly defined using examples. This means that we can consider
that the categories are vaguely defined in the DMs mind and can be seen as qualitative evalu-
ation levels. Furthermore, contrarily to ELECTRE TRI, sorting one alternative may depend
on how other alternatives were sorted.

Formally, we can write the inputs as:

A∗ = C1 ∪ C2 ∪ . . . ∪ Cncat (4)

This notation allows us to write a statement like “ai is assigned to category Ch as an
example” concisely as ai ∈ Ch . We propose to base the sorting of the remaining actions
A\A∗ on one simple principle: “if an alternative ai outranks an alternative a j , then the
category of ai must be at least as good as the category of a j ”:

ai Sa j ∧ ai ∈ Ch ∧ a j ∈ Cs ⇒ h ≥ s. (5)

This principle can be rephrased as stating that “alternatives belonging to a given category
cannot be outranked by any alternative belonging to a lower category, and cannot outrank
any alternative belonging to a higher category”. Although this requirement is not respected
by ELECTRE TRI, it is a reasonable and logic principle given that ai Sa j means “ai is at
least as good as (or is not worse than) a j ”.

The following corollaries result form (5):

(1) ai Pa j ∧ ai ∈ Ch ∧ a j ∈ Cs ⇒ h ≥ s;
(2) ai I a j ∧ ai ∈ Ch ∧ a j ∈ Cs ⇒ h = s;

The latter corollary stems from the fact that ai I a j if and only if ai and a j outrank each
other. Similarly, if there exists a cycle in the outranking relation (ai Sa j SakS . . . Sai), then
(5) also implies that all the alternatives involved in the cycle must be placed in the same
category.

Considering the inputs (4) and principle (5), one may try to find an interval of potential
categories for each alternative remaining to be sorted. For each alternative ai ∈ A\A∗ , let us

123

J Glob Optim (2008) 42:255–277 261

denote this interval as [Cmin(ai), Cmax (ai)]. Hence, Cmin(ai) is the lowest category where
ai may be placed, and Cmax (ai) is the highest category where ai may be placed, without
violating (5) and given the current set of examples. Given ai , principle (5) allows one to
bound Cmin(ai) and Cmax (ai) as follows:

• If ai outranks any alternative from A∗, say a j ∈ Ch for some h, then ai should be placed
into a category at least as good as Ch , i.e., Cmin(ai) ≥ Ch .

• If ai is outranked any alternative from A∗, say a′j ∈ Ch′ for some h′, then ai should be

placed into a category at most as good as Ch′ , i.e., Cmax (ai) ≤ Ch′ .

Taking this into account we may write:

Cmin(ai) = Ch, with h =
{

1, if �a j ∈ A∗ : ai Sa j

max{h ∈ {1, . . . , ncat } : ai Sa j ∧ a j ∈ Ch}, otherwise;
(6)

Cmax (ai) = Ch′ , with h′ =
{

ncat , if �a j ∈ A∗ : a j Sai

min{h ∈ {1, . . . , ncat } : a j Sai ∧ a j ∈ Ch}, otherwise.
(7)

For some ai ∈ A\A∗ it may result that Cmin(ai) = Cmax (ai). This means that one of the
following cases holds, and the DM should include ai in the only possible category for it:

• ai is outranked by an alternative from C1, which means that ai should be placed in C1

also;
• ai outranks an alternative from Cncat , which means that ai should be placed in Cncat also.
• ai outranks an alternative from a given category and is outranked by another (or the same)

alternative from the same category, which means that ai should be placed in that category.

For some ai ∈ A\A∗ it may result that Cmin(ai) < Cmax (ai). In these situations,
the DM may either decide to place the alternative in one of the categories in the interval
[Cmin(ai), Cmax (ai)], or may postpone this decision to a later stage, turning his/her attention
to another unsorted alternative.

Finally, for some ai ∈ A\A∗ it may result that Cmin(ai) > Cmax (ai). In these situations,
the way the set of example alternatives A∗ has been sorted is inconsistent. The cause of the
inconsistency is that ai outranks another alternative a j ∈ Ch and is at the same time outran-
ked by an alternative ak ∈ Ch′ , with h > h′ (there may or not exist a cycle a j Sak Sai Sa j).
The DM now will have two options. The first solution is to reconsider the way the alterna-
tives involved (ak and a j) were sorted, possibly changing the categories where they have
been assigned to, in a manner that respects the principle (5). The other solution is to consider
merging the categories Ch , Ch′ , and all the categories in between, into a single category,
especially if the number of categories is high.

To summarize, if all the parameters defining an outranking relation are set, then the fol-
lowing PASA may be followed to sort alternatives in a set A without explicitly defining the
characteristics of the categories:

1. For each h = 1, . . . , ncat , select an alternative from A (or invent fictitious alternatives)
to serve as examples of the category Ch . Let A∗ be defined as in (4).

2. Choose an element ai ∈ A\A∗
3. Determine Cmin(ai) and Cmax (ai). Then,

• if Cmin(ai) = Cmax (ai) = Ch , then add ai to Ch (hence adding it to A∗);
• if Cmin(ai) < Cmax (ai), then either choose a category Ch ∈ [Cmin(ai), Cmax (ai)]

and add ai to that category (hence adding it to A∗), or do nothing (ai will remain in
A\A∗);

123

262 J Glob Optim (2008) 42:255–277

• if Cmin(ai) > Cmax (ai) (inconsistency), then either revise the sorting judgements
performed until this moment, or merge the categories [Cmax (ai), Cmin(ai)] into a
single one.

4. Choose a different alternative ai ∈ A\A∗ and return to 3.
5. If all the alternatives have been analyzed, either stop the procedure or reanalyze the set

of alternatives remaining to be sorted, returning to 2.

After completing this procedure, a subset of alternatives A∗ ⊆ A will have been sorted.
For the remaining alternatives, an interval of possible categories is determined. Considering
the alternatives sorted in each of the categories, we may state that:

• No alternative outranks another alternative placed in a higher category;
• An alternative may or not outrank alternatives placed in lower categories;
• An alternative may or not outrank, or be outranked, by an alternative in the same category;

it may happen that one is preferable to the other, or that they are indifferent, or that they
are incomparable;

• If two alternatives are indifferent (they outrank each other), then they must belong to the
same category;

• if there is a cycle in the outranking relation, then all the alternatives forming the cycle
must belong to the same category (this idea of considering as indifferent alternatives
forming a cycle in the outranking relation was already present in the first ELECTRE
method, ELECTRE I [19]).

4 Extension of the idea towards an aggregation/disaggregation procedure

We believe that the kind of procedure presented in the previous section is particularly suited
to the ideas of aggregation/disaggregation approaches [8], in which the DM provides infor-
mation in the form of results that the method should yield. In such approaches, all or part of
the parameter values are to be inferred, rather than directly asking the DM to provide them.
The present section has the objective of presenting how the ELECTRE-based PASA may
integrate an aggregation/disaggregation approach.

4.1 Constraints of the parameter values

Previous research [14] shows that inferring all the parameters of ELECTRE methods is a
difficult mathematical problem. Hence, there exists some work devoted to inferring only a
subset of the parameters [13,15,16]. Here, we will consider that all the parameters that are
independent from one criterion to another have already been fixed. Indeed, to set the indiffer-
ence, preference, discordance, or veto thresholds of one criterion, the DM may focus on that
criterion only and needs not think about the remaining criteria. Contrarily to this, to set the
criteria weights or the cutting level, the DM must compare and interrelate the multiple crite-
ria, all at the same time. For this reason, and also because this will lead to manageable linear
programming problems, we will consider that the variables (the parameters to be inferred)
are only the weights k1, . . . , kn and the cutting level λ.

To avoid situations where some criteria have a null weight or an overwhelming weight, we
will constrain the weights to an interval such that no criterion can have so little weight that it
might almost be discarded, or so much weight that it would become a “dictator”. We propose

123

J Glob Optim (2008) 42:255–277 263

that no criterion should weigh more than half of the total number of criteria, by defining the
following set K of acceptable weight vectors:

K = {(k1, . . . , kn) : (1/n − x) ≤ kt ≤ (1/n + x)(t = 1, . . . , n) and
n∑

t=1

kt = 1},

with x such that:

1/n + x = �n/2
 × (1/n − x)

This will allow each weight to vary within an interval centered at the value corresponding
to an equal weights situation (k1 = k2 = . . . = kn = 1/n), while ensuring that no criterion
weighs more than half of other criteria (rounded to the next integer, if n is odd). We therefore
propose that the maximum value for the weights should not be greater than �n/2
 times the
minimum value for the weights. For instance, n = 7 leads to kt ∈ [2/35; 8/35].

Concerning the cutting level λ, we will accept the interval λ ∈ [0, 1], although one would
usually expect that λ ≥ 0.5.

4.2 Inference of the weights and the cutting level

The inference of the weights k1, . . . , kn and the cutting level λ will be performed following
the iterative and interactive process proposed in Sect. 3. The main difference will be that
considering some parameters as variables, rather than having all the parameters fixed, will
result in larger intervals of categories where each alternative may be placed.

As before, let us consider the DM is able to provide a set of alternatives A∗ = C1 ∪
C2 ∪ . . . ∪ Cncat as examples for the different categories. The process should start with
Ch �= ∅ for h = 1, . . . , ncat . These examples implicitly define a set J of compatible vectors
(k1, . . . , kn, λ). By compatible, we mean that ∀(k1, . . . , kn, λ) ∈ J , the principle (5) is not
violated considering A∗. As a note, let us mention that formally the sets J and A∗ should
be written as Jr and A∗r , with r being an index identifying the iteration, since these sets will
change during the interactive process. Nevertheless, we will omit these indices, to keep a
simpler notation.

J = {(k, λ) : λ− S(ap, ai) ≥ ε,∀ap, ai ∈ A∗ : ap ∈ Ch, ai ∈ Cs, h < s

∧
n∑

t=1

kt = 1 ∧ kt ≥ 0(t = 1, . . . , n)}

where ε is an arbitrarily fixed near-zero positive quantity, needed to model the strict inequality
λ− S(ap, ai) > 0, i.e., ¬(ap Sai).

We will now present a linear programming (LP) formulation to find the parameter val-
ues allowing an alternative ai ∈ A\A∗ to be sorted in a given category Ch , subject to the
constraints (k1, . . . , kn, λ) ∈ J . In other words, we will solve an LP to test whether ai can
be sorted in a given category, given the examples defining A∗. Repeating this test for all the
categories will indicate the interval of categories [Cmin(ai), Cmax (ai)] where it would be
reasonable to sort ai .

All the constraints implied by out principle (5) refer to “negative” outranking statements
¬(ap Sai), whenever ap has been placed in a category lower than that of ai . Hence, for very
high values of λ, namely for λ = 1, it is likely that no outranking holds (the exceptions might
come from alternatives dominating other alternatives), thereby satisfying all the constraints.
For this reason, the approach we suggest is based on finding the minimum value for λ that

123

264 J Glob Optim (2008) 42:255–277

allows an alternative ai to be placed in a category Ch . It is then up to the DM to decide whether
that minimum λ is still too high (meaning that placing ai in Ch is unacceptable) or not.

The following LP can be solved to find the minimum λ allowing an alternative ai ∈
A\A∗ to be sorted in a given category Ch , with parameter values (k1, . . . , kn, λ) ∈ J and
respecting (5):

(LP1) Min λi,h

s.t. λi,h − S(ai , am) ≥ ε,∀am ∈ Ct , wi th t > h
λi,h − S(ap, ai) ≥ ε,∀ap ∈ Cs, wi th s < h //Constraints ensuring(5)

k j ≤ (1/n + x), (j = 1, . . . , n) // Upper bound for k j

k j ≥ (1/n − x), (j = 1, . . . , n) // Lower bound k j

(k, λi,h) ∈ J

Let λ∗i,h denote the optimal value of LP1. This value indicates that it is possible to sort

ai into Ch for cutting level values in the interval [λ∗i,h, 1]. The cutting level, let us remind,
indicates whether the credibility of the outranking relations is or not sufficient to establish an
outranking conclusion. It can be interpreted as meaning the required majority of the criteria
weights in favor of an outranking (possibly weakened in case of significant discordance)
needed to accept that conclusion. If λ∗i,h is low, i.e., below 0.5 (meaning a required majority

of 50%) or not much greater than 0.5, then the DM can conclude that sorting ai into Ch is
perfectly acceptable. In contrast, if λ∗i,h is high, i.e., equal to 1 or near 1, then the DM can

conclude that sorting ai into Ch is unacceptable.
For each ai ∈ A\A∗, it is possible to solve ncat linear programs (although it may not be

necessary to solve as many, as we show next), to compute the following vector:

sλ
i = (λ∗i,1, λ∗i,2, . . . , λ∗i,ncat

). (8)

Based on this information, the DM may decide to sort ai into one of the categories (hence
adding ai to A\A∗), or may decide to postpone a decision on ai and proceed to analyze a
different alternative. For instance, if there are three categories and sλ

i = (0.25, 0.85, 0.90),
then the DM could easily decide to place ai into C1, otherwise a cutting level as high as
0.85 would be required. On the other hand, if sλ

i = (0.25, 0.33, 0.40), then these computa-
tions would be of no help to the DM, because usually the DM considers λ ≥ 0.5, therefore
greater than the minimum required for each of the three possibilities of assignment. As in the
procedure presented in Sect. 3, it is also possible to reach a situation of inconsistency. This
would occur if all the values of sλ

i were considered too high, e.g., sλ
i = (0.95, 0.82, 0.90). In

such cases, following the procedure in Sect. 3, the DM would either have to revise previous
judgements or to merge categories.

In summary, the PASA proposed in Sect. 3 may be adapted to the case where the weights
and cutting level are not fixed, based on computing the minimum cutting level that allows
placing each action into each category. If the DM specifies a value λ for the cutting level,
then this will define the minimum and maximum category to which each ai ∈ A\A∗ may be
assigned to, given the assignments made previously:

Cmin(ai) = min{Ch : λ∗i,h ≤ λ}, and Cmax (ai) = max{Ch : λ∗i,h ≤ λ}.
For instance, consider there are 5 categories and one has sλ

i =(0.85, 0.53, 0.40, 0.78, 0.92)

for a given ai . In this situation, if the DM indicates the cutting level is λ = 0.6 implies that
Cmin(ai) = C2 and Cmax (ai) = C3. However, the DM does not have to commit to a precise
value for λ. The same interval of possible categories for ai would be reached if the DM
simply expressed that 0.78 was an excessive value for the cutting level.

123

J Glob Optim (2008) 42:255–277 265

We will now show that sλ
i (8) obeys to what we could call a “convex-shape prop-

erty”: λ∗i,h ≤ max{λ∗i,h−1, λ
∗
i,h+1}. Therefore, it may not be necessary to compute all the

elements of sλ
i to find Cmin(ai) and Cmax (ai) (ai ∈ A\A∗). For instance, one may proceed

as follows:

h ← 1
WHILE h ≤ ncat and λ∗i,h is unacceptably high DO

h ← h + 1
END WHILE
Cmin(ai)← h
IF h > ncat THEN STOP {Inconsistent situation}
h′ ← ncat

WHILE h′ ≥ 1 and λ∗i,h′ is unacceptably high DO
h′ ← h′ − 1

END WHILE
Cmax (ai)← h′ {Inconsistent if h′ < 1 or h′ < h}.
For instance, suppose that a DM considers a cutting level is too high when it exceeds 0.7.

In this case, if sλ
i =(0.25, [0.25], [0.34], 0.54, 0.72) then only the first, the fourth, and the

fifth values would have to be computed: since 0.25 < 0.7 and 0.54 < 0.7, all the values in
between must be lower than 0.7.

The following Proposition establishes the “convex-shape property”:

Proposition 1 If ai can be placed in Cx and ai can be placed in Cz (x < z − 1) given J
then, for all y ∈ {x + 1, x + 2, . . . , z − 1}, ai can be placed in C y.

Proof Since ai can be placed in Cz , it must hold:

∃(k, λ) ∈ J : �aα ∈ Cw,w < z : aα S ai . (9)

On the other hand, Since ai can be placed in Cx , it must hold:

∃(k, λ) ∈ J : �aβ ∈ Cb, b > x : ai S aβ . (10)

We will now suppose the proposition is false and show this leads to a contradiction. If the
proposition was false, then there would exist an index y greater than x and lower than z such
that ai could not be placed in C y , i.e.:

∀(k, λ) ∈ J, [(∃ aα′ ∈ Cw′ , w′ < y : aα′ S ai)

∨ (∃ aβ ′ ∈ Cb′ , b′ > y : ai S aβ ′)] (11)

The previous expression states that, for every vector of parameter values in J (the set of
acceptable vector of parameter values given the examples provided so far), either a) there
exists an action aα′ in a category lower than C y that outranks ai ; or b) there exists an action
aβ ′ in a category higher than C y that is outranked by ai . However, since w′ < y ∧ y < z ⇒
w′ < z, then the case a) contradicts (9), whereas since b′ > y ∧ y > x ⇒ b′ > x , then the
case b) contradicts (10). Hence, (11) leads to a contradiction. ��

5 Illustrative examples

In this section we will illustrate the use of the procedure proposed in this paper using two sets
of data. In both cases, we considered the weights and cutting level as variables, and to impose

123

266 J Glob Optim (2008) 42:255–277

Table 1 Evaluations on six criteria for 20 stocks

g1 g2 g3 g4 g5 g6 g1 g2 g3 g4 g5 g6

a0 0.82 0.45 0.26 −4.7 −100 0.45 a10 0.8 0.58 0.62 13.7 34.6 1.54

a1 0.41 0.63 0.03 2.28 −20 2.04 a11 1.23 0.37 0.64 8.97 45.9 0.96

a2 0.57 0.2 0.1 6.08 −33.3 1.08 a12 0.24 0.28 0.73 −1.75 0 0.72

a3 0.24 0.02 0.08 2.41 −53.5 0.62 a13 0.26 0.65 0.58 4.88 7.14 0.9

a4 0 0.46 0.62 5.04 −76.5 3.02 a14 1.1 0.76 0.54 0.29 0 0.73

a5 0.93 0.02 0.14 2.82 6.38 0.72 a15 1.79 0.55 0.73 5.88 −100 2.69

a6 0.01 0.69 0.77 7.55 −40 3.23 a16 1.02 1.06 0.82 5.5 6.38 0.73

a7 0.86 0.86 0.86 4.28 3.71 0.57 a17 1.32 1.12 0.94 12.06 −61 2.69

a8 2.16 0.6 0.12 2.11 56.3 0.51 a18 1.36 0.04 1.02 1.79 110 2.31

a9 1.24 0.12 0.62 11.65 12.5 1.17 a19 0.57 0.17 0.23 −11.5 0 0.52

Table 2 Indifference and preference thresholds

g1 g2 g3 g4 g5 g6

q j 0.05 0.05 0 0.1 8.72 0.05

p j 0.25 0.2 0.2 0.5 10 0.25

strict inequalities in LP1 we used ε = 0.00001. Since the DMs of the original studies were
not present, and since the results obtained in these studies are not intended to be compared
with the ones to be obtained with our procedure, we followed a simple “rule-of-thumb” to
provide examples. This rule is to choose for some alternatives the category corresponding to
the minimum value in the vector sλ

i corresponding to them. Of course, in the presence of a
real DM, his/her preferences and requirements, based on holistic judgement and experience,
should strongly influence the choice of the examples. Hence, these illustrative examples
should not be seen as indicating a way to automatically sort the alternatives.

5.1 First example

We will use data form an application for sorting stocks listed in the Athens Stock Exchange
[7], namely 20 alternatives from the commercial sector, which were evaluated on 6 criteria
(Table 1). The criteria names are not relevant here, therefore we will note only that all criteria
are to be maximized, except g3(.), where the lower the values, the better. Three categories are
to be used: C1 (“not attractive”), C2 (“uncertain”), and C3 (“attractive”, the best category).

We will use the original values [7] for the indifference and preference thresholds (Table 2),
but we will not use the veto thresholds, i.e., we will ignore discordance. This occurs, in this
particular example, because the original values for the veto thresholds led to many veto
situations. Since our procedure is based on varying weights and the cutting level to see if
it is possible to avoid all the outrankings forbidden by (5), having many veto situations is
undesirable to the extent that many of the forbidden outrankings will not hold regardless of
the weights and the cutting level values.

123

J Glob Optim (2008) 42:255–277 267

The remaining parameters are considered as variables. The cutting level λ can assume val-
ues in [0, 1], whereas the weight vectors are constrained to a polytope K defined as suggested
in Sect. 4.1. (no criterion is preponderant and no criterion is negligible):

K = {(k1, . . . , k6) : 1/12 ≤ k j ≤ 3/12(j = 1, . . . , 6) ∧ k1 + k2 + . . .+ k6 = 1}.

Let us suppose the DM starts by stating one example for each of the three categories:
a3 → C1, a14 → C2, and a11 → C3, i.e., A∗ = C1∪C2∪C3, with C1 = {a3}, C2 = {a14},
and C3 = {a11}. Table 3 depicts the optimal values λ∗i,h of (LP1) for each potential way of
sorting the remaining alternatives in A\A∗.

If as usual in ELECTRE the DM states that λ will be at least 0.5, then any sorting pos-
sibility with λ∗i,h < 0.5 will be feasible (the sorting is possible for any λ ∈ [λ∗i,h, 1]). For

instance, we may see that alternative a0 can perfectly be sorted into C1 or C2. However,
sorting a0 into C3 would require accepting λ ≥ 0.75, which might be considered too high. If
the DM considered that λ ≥ 0.60 would already be too high, then the alternative a13 could be
placed only in C2. Concerning the remaining alternatives, there are typically two categories
(sometimes three) where each one could easily be placed. This lack of constraints is natural
given the scarce information used up to this moment. In the absence of a DM, we will choose
as a set of new examples those that had only one element in sλ

i lower than 0.5: a0 → C1,
a5, a13, and a16 are sorted into C2, a8, a9, and a10 are sorted into C3. The results are now
those depicted in Table 4, where it can be seen that each value for λ∗i,h is not lower than the
respective value in Table 3. This is natural, since the minimum value of the linear program
(LP1) does not decrease as new constraints are added.

Again, we remind that this procedure is not to be followed in such an automatic way.
Rather, the holistic evaluations of the DM should play the main role. As a matter of fact,
when the most obvious choices are made (e.g., considering at this point adding a7 → C2

and a19 → C1, two situations where λ∗i,h is clearly low compared with the other sorting pos-
sibilities for the same alternatives), they are not likely to add much information. Therefore,
we will continue now considering a4 → C1, a2, a7 → C2, and a17 → C3, where a2 → C2

would not be an obvious choice for sorting a2, but would be the result of a request by the
DM. The corresponding results are provided in Table 5.

Table 3 Minimum cutting levels λ∗i,h for sorting the alternatives at iteration 1

C1 C2 C3 C1 C2 C3

a0 0.342 0.500 0.750 a10 0.500 0.500 0.379

a1 0.410 0.350 0.463 a11 �
a2 0.371 0.342 0.463 a12 0.356 0.438 1.000

a3 � a13 0.610 0.349 0.600

a4 0.355 0.417 0.504 a14 �
a5 0.600 0.348 0.529 a15 0.440 0.440 0.379

a6 0.369 0.344 0.504 a16 0.713 0.342 0.500

a7 0.442 0.342 0.667 a17 0.500 0.500 0.351

a8 0.604 0.542 0.371 a18 0.529 0.500 0.342

a9 0.650 0.500 0.342 a19 0.355 0.397 0.750

123

268 J Glob Optim (2008) 42:255–277

Table 4 Minimum cutting levels λ∗i,h for sorting the alternatives at iteration 2

C1 C2 C3 C1 C2 C3

a0 � a10 �
a1 0.500 0.500 0.542 a11 �
a2 0.542 0.517 0.500 a12 0.465 0.510 1.000

a3 � a13 �
a4 0.417 0.500 0.713 a14 �
a5 � a15 0.583 0.4480 0.417

a6 0.419 0.417 0.542 a16 �
a7 0.600 0.417 1.000 a17 0.600 0.542 0.417

a8 � a18 0.558 0.533 0.417

a9 � a19 0.500 0.688 0.833

Table 5 Minimum cutting levels λ∗i,h for sorting the alternatives at iteration 3

C1 C2 C3 C1 C2 C3

a0 � a10 �
a1 0.613 0.500 0.546 a11 �
a2 � a12 0.465 0.522 1.000

a3 � a13 �
a4 � a14 �
a5 � a15 0.583 0.474 0.486

a6 0.542 0.417 0.542 a16 �
a7 � a17 �
a8 � a18 0.558 0.575 0.500

a9 � a19 0.515 0.688 0.833

Table 6 Minimum cutting levels λ∗i,h for sorting the alternatives at iteration 4

C1 C2 C3 C1 C2 C3

a0 � a10 �
a1 � a11 �
a2 � a12 �
a3 � a13 �
a4 � a14 �
a5 � a15 0.750 0.750 0.700

a6 � a16 �
a7 � a17 �
a8 � a18 �
a9 � a19 0.556 0.693 0.833

123

J Glob Optim (2008) 42:255–277 269

Table 7 Minimum cutting levels λ∗i,h for sorting the alternatives after removing example a18 → C3

C1 C2 C3 C1 C2 C3

a0 � a10 �
a1 � a11 �
a2 � a12 �
a3 � a13 �
a4 � a14 �
a5 � a15 0.583 0.542 0.700

a6 � a16 �
a7 � a17 �
a8 � a18 0.617 0.577 0.542

a9 � a19 0.556 0.693 0.833

Table 8 Performances of the alternatives to be sorted (second example)

g1 g2 g3 g4 g5 g6 g7 g1 g2 g3 g4 g5 g6 g7

a0 35.8 67.0 19.7 0.0 0.0 5.0 4.0 a20 15.5 8.5 56.2 5.5 1.8 4.0 2.0

a1 16.4 14.5 59.8 7.5 5.2 5.0 3.0 a21 13.2 9.1 74.1 6.4 5.0 2.0 2.0

a2 35.8 24.0 64.9 2.1 4.5 5.0 4.0 a22 9.1 4.1 44.8 3.3 10.4 3.0 4.0

a3 20.6 61.7 75.7 3.6 8.0 5.0 3.0 a23 12.9 1.9 65.0 14.0 7.5 4.0 3.0

a4 11.5 17.1 57.1 4.2 3.7 5.0 2.0 a24 5.9 −27.7 77.4 16.6 12.7 3.0 2.0

a5 22.4 25.1 49.8 5.0 7.9 5.0 3.0 a25 16.9 12.4 60.1 5.6 5.6 3.0 2.0

a6 23.9 34.5 48.9 2.5 8.0 5.0 3.0 a26 16.7 13.1 73.5 11.9 4.1 2.0 2.0

a7 29.9 44.0 57.8 1.7 2.5 5.0 4.0 a27 14.6 9.7 59.5 6.7 5.6 2.0 2.0

a8 8.7 5.4 27.4 4.5 4.5 5.0 2.0 a28 5.1 4.9 28.9 2.5 46.0 2.0 2.0

a9 25.7 29.7 46.8 4.6 3.7 4.0 2.0 a29 24.4 22.3 32.8 3.3 5.0 3.0 4.0

a10 21.2 24.6 64.8 3.6 8.0 4.0 2.0 a30 29.5 8.6 41.8 5.2 6.4 2.0 3.0

a11 18.3 31.6 69.3 2.8 3.0 4.0 3.0 a31 7.3 −64.5 67.5 30.1 8.7 3.0 3.0

a12 20.7 19.3 19.7 2.2 4.0 4.0 2.0 a32 23.7 31.9 63.6 12.1 10.2 3.0 2.0

a13 9.9 3.5 53.1 8.5 5.3 4.0 2.0 a33 18.9 13.5 74.5 12.0 8.4 3.0 3.0

a14 10.4 9.3 80.9 1.4 4.1 4.0 2.0 a34 13.9 3.3 78.7 14.7 10.1 2.0 2.0

a15 17.7 19.8 52.8 7.9 6.1 4.0 4.0 a35 −13.3 −31.1 63.0 21.2 29.1 2.0 1.0

a16 14.8 15.9 27.9 5.4 1.8 4.0 2.0 a36 6.2 −3.2 46.1 4.8 10.5 2.0 1.0

a17 16.0 14.7 53.5 6.8 3.8 4.0 4.0 a37 4.8 −3.3 71.1 8.6 11.6 2.0 2.0

a18 11.7 10.0 42.1 12.2 4.3 5.0 2.0 a38 0.1 −9.6 42.5 12.9 12.4 1.0 1.0

a19 11.0 4.2 60.8 6.2 4.8 4.0 2.0 a39 13.6 9.1 76.0 17.1 10.3 1.0 1.0

Sorting many alternatives at each iteration increases the risk of reaching an inconsistency
situation. For instance, let us suppose the DM decided to sort all the remaining alternatives
except a15 and a19 to the categories where the value λ∗i,h was minimum. This would lead
to the results in Table 6, where the DM must accept a cutting level of at least 0.7 to sort
a15. If we suppose this was considered too high by the DM, then some examples would
have to be withdrawn. To inform this decision, one may check which constraints of (LP1)

123

270 J Glob Optim (2008) 42:255–277

are binding at the optimal solutions concerning a15, which would show that the example
concerning a18 is responsible for the high values in λ∗15,1 and λ∗15,2. Withdrawing only the

example a18 (removing the alternative from C3) leads to Table 7. At this point the DM could
decide a15 → C2, which would not change s∗19. Then, a19 → C1 would be a natural con-
tinuation for this process, yielding s∗18 = (0.617, 0.577, 0.750). Finally, a18 → C2 could be
the natural ending for this process.

5.2 Second example

We will now present a second example with more alternatives to sort and more categories.
We will use data from [4], referring to the evaluation of 40 companies to be sorted into 5 cate-

Table 9 Thresholds associated with the criteria

g1 g2 g3 g4 g5 g6 g7

q j 1 4 1 1 0 0 0

p j 2 6 3 2 3 0 0

u j 35 90 45 20 35 3.5 3.5

v j 45 120 55 30 45 6.5 6.5

Table 10 Minimum cutting levels λ∗i,h at iteration 1 (2nd example)

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

a0 1.00 1.00 1.00 1.00 0.41 a20 1.00 0.77 0.43 0.41 0.78

a1 1.00 1.00 0.47 0.41 0.77 a21 �
a2 1.00 1.00 0.77 0.77 0.41 a22 0.54 0.44 0.41 0.44 0.54

a3 0.73 0.73 0.44 0.41 0.41 a23 �
a4 0.84 0.68 0.41 0.41 0.54 a24 0.41 0.54 0.77 1.00 1.00

a5 0.97 0.97 0.54 0.41 0.41 a25 0.95 0.54 0.41 0.41 0.95

a6 0.96 0.96 0.54 0.44 0.41 a26 0.77 0.41 0.70 0.70 1.00

a7 1.00 1.00 0.77 0.77 0.41 a27 0.95 0.54 0.68 0.68 1.00

a8 0.77 0.54 0.47 0.48 0.41 a28 �
a9 1.00 0.77 0.77 0.47 0.41 a29 �
a10 0.77 0.73 0.44 0.53 0.53 a30 0.89 0.77 0.41 0.41 0.47

a11 1.00 0.77 0.54 0.50 0.52 a31 0.41 0.41 0.41 1.00 1.00

a12 1.00 0.77 0.76 0.54 0.43 a32 0.56 0.50 0.43 0.51 0.56

a13 0.54 0.54 0.54 0.54 1.00 a33 0.56 0.48 0.41 0.53 0.77

a14 0.54 0.41 0.53 0.53 0.77 a34 0.42 0.53 1.00 1.00 1.00

a15 1.00 1.00 0.80 0.43 0.71 a35 0.41 0.77 0.77 0.89 1.00

a16 1.00 0.77 0.73 0.41 0.54 a36 0.41 0.71 0.71 0.71 0.71

a17 � a37 0.50 0.77 0.77 0.77 1.00

a18 0.73 0.73 0.54 0.49 0.54 a38 0.41 0.77 0.77 0.77 0.77

a19 0.67 0.56 0.53 0.53 1.00 a39 0.41 0.53 1.00 1.00 1.00

123

J Glob Optim (2008) 42:255–277 271

gories (in the original application there were only 3 categories) representing their risk, based
on their performances on 7 criteria. Criteria g1, g2, g6, and g7 are to be maximized, whereas
g3, g4, and g5 are to be minimized. Table 8 depicts the performances of the alternatives on
these criteria.

We will consider as fixed the indifference, preference, discordance, and veto thresholds
associated with each criterion, indicated in Table 9. We now enable discordance to occur,
although we have chosen values for u j and v j that do not allow veto situations to occur
frequently when comparing the alternatives.

The remaining parameters are again considered as variables. The cutting level λ can
assume values in [0, 1], whereas the weight vectors are constrained to a polytope K defined
as suggested in Sect. 4.1:

K = {(k1, . . . , k7) : 2/35 ≤ k j ≤ 8/35(j = 1, . . . , 7) ∧ k1 + k2 + . . .+ k7 = 1}.

Let us suppose the DM starts by stating one example for each of the five categories:
a28 → C1, a21 → C2, a23 → C3, a17 → C4, and a29 → C5. Table 10 depicts the optimal
values λ∗i,h of (LP1) for each potential way of sorting the remaining alternatives in A\A∗.

Despite the scarce information used, there are some possible assignments that are very
natural to accept, such as sorting a0 into C5. If we hypothesize that the DM wants to consider a
cutting level lower than 0.7, then the following examples could be also added: a35, a36, a38 →
C1, a26 → C2, a15 → C4, a0, a2, a7 → C5. Adding these examples would lead to the results

Table 11 Minimum cutting levels λ∗i,h at iteration 2 (2nd example)

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

a0 � a20 1.00 0.77 0.48 0.46 0.78

a1 1.00 1.00 0.52 0.45 0.77 a21 �
a2 � a22 0.54 0.46 0.45 0.48 0.54

a3 0.73 0.73 0.51 0.45 0.45 a23 �
a4 0.84 0.68 0.49 0.49 0.54 a24 0.45 0.59 0.77 1.00 1.00

a5 0.97 0.97 0.63 0.45 0.45 a25 0.95 0.55 0.50 0.50 0.95

a6 0.96 0.96 0.63 0.50 0.45 a26 �
a7 � a27 0.95 0.55 0.68 0.68 1.00

a8 0.77 0.54 0.50 0.48 0.50 a28 �
a9 1.00 0.77 0.77 0.50 0.45 a29 �
a10 0.77 0.73 0.51 0.53 0.55 a30 0.89 0.77 0.52 0.45 0.47

a11 1.00 0.77 0.54 0.50 0.53 a31 0.50 0.52 0.52 1.00 1.00

a12 1.00 0.77 0.77 0.54 0.45 a32 0.77 0.51 0.45 0.51 0.56

a13 0.55 0.54 0.56 0.54 1.00 a33 0.77 0.50 0.45 0.53 0.95

a14 0.54 0.45 0.54 0.54 0.77 a34 0.47 0.53 1.00 1.00 1.00

a15 � a35 �
a16 1.00 0.77 0.73 0.46 0.55 a36 �
a17 � a37 0.53 0.77 0.77 0.79 1.00

a18 0.76 0.73 0.54 0.54 0.54 a38 �
a19 0.67 0.56 0.53 0.53 1.00 a39 0.45 0.59 1.00 1.00 1.00

123

272 J Glob Optim (2008) 42:255–277

Table 12 Minimum cutting levels λ∗i,h at iteration 3 (2nd example)

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

a0 � a20 1.00 0.77 0.57 0.53 1.00

a1 1.00 1.00 0.55 0.53 0.77 a21 �
a2 � a22 0.58 0.57 0.57 0.57 0.62

a3 0.98 0.98 0.54 0.53 0.53 a23 �
a4 0.84 0.68 0.53 0.53 0.73 a24 �
a5 1.00 1.00 0.63 0.53 0.53 a25 0.95 0.61 0.54 0.54 0.95

a6 1.00 1.00 0.63 0.56 0.53 a26 �
a7 � a27 0.95 0.60 0.68 0.68 1.00

a8 0.77 0.59 0.53 0.53 0.77 a28 �
a9 1.00 1.00 0.77 0.59 0.57 a29 �
a10 0.77 0.77 0.56 0.58 0.57 a30 0.89 0.77 0.54 0.53 0.56

a11 1.00 1.00 0.68 0.53 0.57 a31 0.54 0.57 0.58 1.00 1.00

a12 � a32 �
a13 0.61 0.59 0.77 0.77 1.00 a33 �
a14 � a34 �
a15 � a35 �
a16 � a36 �
a17 � a37 �
a18 0.76 0.73 0.57 0.56 0.77 a38 �
a19 0.68 0.60 0.77 0.77 1.00 a39 �

in Table 11. Tables 12–16 present a possible sequence based on a systematical choice of the
lower λ∗i,h values.

After the last iteration, only two alternatives remain to be sorted: a22 and a25. There
remains some freedom concerning how to sort them. For instance, sorting a22 into C1, C2,
C3, or C4 (C5 would require a higher cutting level) does not change the values of sλ

25, mean-
ing it allows sorting a25 into one of the three categories in the interval [C2, C4]. Likewise,
sorting a25 into one of the three categories in the interval [C2, C4] does not constrain the
sorting possibilities for a22. Therefore, the procedure would not be of further help to the DM
concerning how to sort these two alternatives.

6 Conclusion

This work presented a PASA based on the ELECTRE methodology. Its purpose is to support
a DM who does not wish to provide a formal and explicit definition for the categories in an
ordinal sorting problem. Rather, the categories can be seen as subjective qualitative evalua-
tion levels vaguely established in the DM’s mind. The PASA supports the DM by enforcing
the principle (5): “if an alternative outranks (is as good as) a second one, then it must be
placed on the same category or in a better category”.

We have shown that if the outranking relation is completely defined (all the parameter
values are fixed), then it is possible to constrain the range of categories where an alternative

123

J Glob Optim (2008) 42:255–277 273

Table 13 Minimum cutting levels λ∗i,h at iteration 4 (2nd example)

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

a0 � a20 �
a1 1.00 1.00 0.56 0.54 0.77 a21 �
a2 � a22 0.58 0.57 0.59 0.57 0.62

a3 0.98 0.98 0.58 0.55 0.54 a23 �
a4 0.84 0.68 0.63 0.54 0.73 a24 �
a5 1.00 1.00 0.77 0.58 0.54 a25 0.95 0.62 0.55 0.55 0.95

a6 � a26 �
a7 � a27 0.95 0.60 0.68 0.68 1.00

a8 0.77 0.62 0.59 0.54 0.77 a28 �
a9 1.00 1.00 0.85 0.59 0.59 a29 �
a10 0.77 0.77 0.58 0.58 0.58 a30 0.89 0.77 0.59 0.55 0.59

a11 � a31 �
a12 � a32 �
a13 0.62 0.59 0.77 0.77 1.00 a33 �
a14 � a34 �
a15 � a35 �
a16 � a36 �
a17 � a37 �
a18 0.76 0.73 0.58 0.57 0.77 a38 �
a19 0.68 0.60 0.77 0.77 1.00 a39 �

may be sorted given sorting examples previously expressed. We have also shown how the
same idea may be used in an aggregation/disaggregation approach, considering the weights
and the cutting level are not fixed a priori, but constrained by the examples provided. In this
context, we established a “convex-shape property” that shows that there are no “holes” in
the range of possible categories for an alternative: if it can be placed in Cx and C y , then it
can be placed in any category in [Cx , C y].

Finally, we have proposed, and we have illustrated with some examples, a process based
on the computation of the minimum cutting level λ∗i,h needed to allow an alternative ai to be

sorted into a category Ch .
The spirit of the approach proposed in this paper is that of aiding a DM to perform sorting

decisions in a consistent manner, rather than deriving a model to substitute the DM. Each
sorting decision will constrain the subsequent ones if consistency with principle (5) is to be
maintained. Therefore, the DM is aided when the procedure shows what is the minimum
and maximum category where an alternative might be sorted. Sometimes, the minimum and
maximum will coincide. Some other times, it is up to the DM to make the decision. In this
sense, the procedure both assists the DM and is assisted by the DM. The DM assists the pro-
cedure by choosing one among a range of potential categories for an alternative. On the other
hand, the DM will be assisted subsequently as the newly sorted alternative may contribute
to narrow the interval of possible categories for future alternatives.

Comparing this approach with ELECTRE TRI and its aggregation/disaggregation exten-
sions [3], the most salient feature of the approach proposed in this paper is that the explicit

123

274 J Glob Optim (2008) 42:255–277

Table 14 Minimum cutting levels λ∗i,h at iteration 5 (2nd example)

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

a0 � a20 �
a1 1.00 1.00 0.59 0.54 0.77 a21 �
a2 � a22 0.58 0.58 0.59 0.58 0.73

a3 0.98 0.98 0.58 0.58 0.54 a23 �
a4 � a24 �
a5 � a25 0.95 0.62 0.56 0.56 0.95

a6 � a26 �
a7 � a27 0.95 0.60 0.68 0.68 1.00

a8 � a28 �
a9 1.00 1.00 0.85 0.67 0.59 a29 �
a10 0.77 0.77 0.59 0.60 0.61 a30 0.89 0.77 0.61 0.57 0.59

a11 � a31 �
a12 � a32 �
a13 0.62 0.61 0.77 0.77 1.00 a33 �
a14 � a34 �
a15 � a35 �
a16 � a36 �
a17 � a37 �
a18 0.76 0.73 0.62 0.57 0.77 a38 �
a19 0.68 0.62 0.77 0.77 1.00 a39 �

definition of category limits (profiles) is avoided. However, contrarily to other approaches
that define categories on the basis of exemplary alternatives (e.g., [1]), we use the outranking
relation in an asymmetrical way, rather than being interested in an indifference relation.

Avoiding the definition of category limits may be considered as an advantage of this
procedure, as inferring the category limits is not an easy task without imposing a few sim-
plifications [16]. In any case, we are indirectly defining multiple limits. In ELECTRE TRI
(pessimistic variant), an alternative is sorted into a category if it outranks its lower limit and
does not outrank its upper limit, with lower and upper limits defined a priori. In this paper,
an alternative is sorted into a category if it is not outranked by a lower limit and does not
outrank an upper limit, with lower and upper limits being any alternative already sorted by
the DM in worse or better categories, respectively.

Both the procedure proposed here and ELECTRE TRI have the common characteristic of
not sorting an alternative into a precise category if that alternative shows to be atypical. In
ELECTRE TRI this is reflected in different results between the pessimistic and optimistic
variants, which appear when the alternative to be sorted is incomparable to one or more
limits. In this paper, the procedure in Sect. 3 may also result in Cmin(ai) �= Cmax (ai), if
the alternative is incomparable to all the examples placed in a given category. However, if
the DM then decides to consider that alternative as an example for one of the categories in
[Cmin(ai), Cmax (ai)], then subsequent similar alternatives will use that example to justify
a more precise classification. As the number of sorted alternatives increases, the chance of

123

J Glob Optim (2008) 42:255–277 275

Table 15 Minimum cutting levels λ∗i,h at iteration 6 (2nd example)

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

a0 � a20 �
a1 � a21 �
a2 � a22 0.63 0.63 0.65 0.65 0.73

a3 � a23 �
a4 � a24 �
a5 � a25 1.00 0.63 0.63 0.67 0.95

a6 � a26 �
a7 � a27 �
a8 � a28 �
a9 � a29 �
a10 0.77 0.77 0.69 0.68 0.64 a30 �
a11 � a31 �
a12 � a32 �
a13 0.68 0.63 0.77 0.77 1.00 a33 �
a14 � a34 �
a15 � a35 �
a16 � a36 �
a17 � a37 �
a18 � a38 �
a19 0.71 0.64 0.77 0.77 1.00 a39 �

finding an atypical alternative decreases. The downside is that as the number of examples
increases, so does the chance of being inconsistent.

Since the examples can be fictitious vectors of performances invented by the DM (as
usually are the limits in ELECTRE TRI), our paper can be interpreted as proposing an exten-
sion of ELECTRE TRI to allow multiple limits (probably incomparable ones) separating the
categories. The main difference would then be the fact that the condition of outranking the
lower limit is replaced by the condition of not being outranked by a lower limit. This use of
this approach would place each alternative in the lowest category allowed by the principle (5)
(pessimistic variant), or in the highest category possible (optimistic variant). If the principle
(5) is to be strictly followed, as sustained in this paper, then it must apply to all the alternatives
that are sorted by the DM. Nevertheless, the DM can select not to consider all alternatives
as examples, i.e., not to sort all alternatives to precise categories. This means that the set A∗
would strictly follow the principle (5), serving as prototypes to constrain the sorting of the
remaining alternatives ai ∈ A\A∗ to an interval [Cmin(ai), Cmax (ai)] (Cmin(ai) being the
result of a pessimistic procedure, and Cmax (ai) being the result of an optimistic procedure).

Comparing the aggregation/disaggregation approach proposed here with the one proposed
for ELECTRE TRI, another difference is to have only negative outranking (i.e., non-outran-
king) constraints of the type λ− S(ap, ai) ≥ ε, whereas for ELECTRE TRI we have positive
(λ − S(ap, ai) ≤ 0) as well as negative outranking constraints. Therefore, in this paper we
do not infer a value for the cutting level λ (we know that λ = 1 would trivially solve almost
all of the constraints), but we infer a minimum value for this parameter. This forces the DM

123

276 J Glob Optim (2008) 42:255–277

Table 16 Minimum cutting levels λ∗i,h at iteration 7 (2nd example)

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

a0 � a20 �
a1 � a21 �
a2 � a22 0.66 0.65 0.67 0.67 0.73

a3 � a23 �
a4 � a24 �
a5 � a25 1.00 0.65 0.65 0.67 0.95

a6 � a26 �
a7 � a27 �
a8 � a28 �
a9 � a29 �
a10 � a30 �
a11 � a31 �
a12 � a32 �
a13 � a33 �
a14 � a34 �
a15 � a35 �
a16 � a36 �
a17 � a37 �
a18 � a38 �
a19 � a39 �

to deal explicitly with the meaning of the cutting level when deciding in which categories
may each alternative be sorted into, which may be seen as the price to pay in this approach
to avoid the definition of category limits.

Finding appropriate ways of incorporating positive outranking constraints in this approach
is an interesting issue to research in the future. Future research is also needed to evaluate
the implications of the number and choice of examples in the results of the procedure. This
involves not only to continue experimenting with examples such as the ones presented here,
but also possibly performing simulation studies.

Acknowledgement This work has been supported by FCT/FEDER grant POCI 2010/EGE/58371/2004.

References

1. Belacel, N.: Multicriteria assignment method PROAFTN: methodology and medical application. Euro-
pean J. Oper. Res. 125(1), 175–183 (2000)

2. Bilgin, S., Köksalan, M., Mousseau, V., Özpeynirci, O.: A new outranking-based approach for assigning
alternatives to ordered classes. Communication to the 18th International Conference on Multiple Criteria
Decision Making. pp. 19–23. Chania, Greece (2006)

3. Dias, L.C., Mousseau, V., Figueira, J., Clímaco, J.N.: An aggregation/disaggregation approach to obtain
robust conclusions with ELECTRE TRI. European J. Oper. Res. 138(2), 332–348 (2002)

4. Dimitras, A., Zopounidis, C., Hurson, C.: A multicriteria decision aid method for the assessment of
business failure risk. Found. Comput. Decision Sci. 20(2), 99–112 (1995)

123

J Glob Optim (2008) 42:255–277 277

5. Doumpos, M., Zopounidis, C.: A multicriteria classification approach based on pairwise compari-
sons. European J. Oper. Res. 158, 378–389 (2004)

6. Greco, S., Matarazzo, B., Slowinski, R.: Rough sets methodology for sorting problems in presence of
multiple attributes and criteria. European J. Oper. Res. 138, 247–259 (2002)

7. Hurson, C., Zopounidis, C.: On the use of multicriteria decision aid methods to portfolio selection. In: Cli-
maco, J.N. (ed.) Multicriteria Analysis., pp. 496–507. Springer-Verlag, Berlin (1997)

8. Jacquet-Lagrèze, E., Siskos, Y.: Preference disaggregation: 20 years of MCDA experience. European J.
Oper. Res. 130(2), 233–245 (2001)

9. Koksalan, M., Ulu, C.: An interactive approach for placing alternatives in preference classes. European
J. Oper. Res. 144, 429–439 (2003)

10. Larichev, O.I., Moskovich, H.M.: An approach to ordinal classification problems. Int. Trans. Oper.
Res. 1(3), 375–385 (1994)

11. Massaglia, R., Ostanello, A.: N-tomic: a support system for multicriteria segmentation problems. In: Ko-
rhonen, P., Lewandowski, A., Wallenius, J. (eds.) Multiple Criteria Decision Support., pp. 167–
174. Springer Verlag, LNEMS 356 (1991)

12. Moscarola, J., Roy, B.: Procédure automatique d’examen de dossiers fondée sur une segmentation tri-
chotomique en présence de critères multiples. RAIRO Oper. Res. 11(2), 145–173 (1977)

13. Mousseau, V., Dias, L.C.: Valued outranking relations in ELECTRE providing manageable disaggrega-
tion procedures. European J. Oper. Res. 156(2), 467–482 (2003)

14. Mousseau, V., Slowinski, R.: Inferring an ELECTRE TRI model from assignment examples. J. Global
Optim. 12(2), 157–174 (1998)

15. Mousseau, V., Slowinski, R., Zielniewicz, P.: A user-oriented implementation of the ELECTRE TRI
method integrating preference elicitation support. Comput. Oper. Res. 27(7–8), 757–777 (2000)

16. Ngo The, A., Mousseau, V.: Using assignment examples to infer category limits for the ELECTRE TRI
method. J. Multi-Criteria Decis. Anal. 11(1), 29–43 (2002)

17. Perny, P.: Multicriteria filtering methods based on concordance/non-discordance principles. Ann. Oper.
Res. 80, 137–167 (1998)

18. Roy, B.: ELECTRE III : Un algorithme de classements fondé sur une représentation floue des préférences
en présence de critères multiples. Cahiers du CERO 20(1), 3–24 (1978)

19. Roy, B., Bouyssou, D.: Aide Multicritère à la Décision: Méthodes et Cas. Economica, Paris (1993)
20. Yu, W.: Aide multicritère à la décision dans le cadre de la problématique du tri: méthodes et applications.

PhD thesis, LAMSADE, Université Paris Dauphine (1992)
21. Zopounidis, C., Zanakis, S., Doumpos, M.: Multicriteria preference disaggregation for classification

problems with an application to global investing risk. Decis. Sci. 32(2), 333–385 (2001)

123

	An algorithm for ordinal sorting based on ELECTRE with categories defined by examples
	Abstract
	1 Introduction
	2 Valued outranking relations in ELECTRE
	2.1 Computation of single-criterion concordance indices
	2.2 Computation of the global concordance index
	2.3 Computation of single-criterion discordance indices
	2.4 Computation of the credibility degree

	3 An ELECTRE-type PASA without explicit category limits
	4 Extension of the idea towards an aggregation/disaggregation procedure
	4.1 Constraints of the parameter values
	4.2 Inference of the weights and the cutting level

	5 Illustrative examples
	5.1 First example
	5.2 Second example

	6 Conclusion
	Acknowledgement

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

